KoCoS Blog

Six-Sigma in der Siliziumkarbid-Substratherstellung mit LOTOS 3D-Messystemen.

Das Erreichen der strengen Null-Fehler-Strategie in der Automobilindustrie wird zu einer großen Herausforderung für die Hersteller von Siliziumkarbid-Substraten. Sowohl die Umstellung von 150- auf 200-mm-Wafer, als auch die generelle Verlagerung ihres Schwerpunktes weg von reinem Silizium, zwingen die Hersteller um ausreichende Erträge und Zuverlässigkeit zu ringen.

SiC ist eine Kombination aus Silizium und härteren Karbidmaterialien und hat sich aufgrund seiner großen Bandlücke zu einer Schlüsseltechnologie für batteriebetriebene Elektrofahrzeuge entwickelt. Siliziumkarbid funktioniert bei höherer Leistung, höheren Temperaturen und höheren Schaltfrequenzen als Silizium. Diese Eigenschaften können genutzt werden, um die Reichweite von Elektrofahrzeugbatterien zu erhöhen und die Ladezeit zu verkürzen.

"Die Leute wollen ihr Auto in weniger als 10 bis 15 Minuten aufladen, und das wird sich weiter entwickeln", sagte Sam Geha, CEO von Infineon Technologies' Memory Solutions. "Das erfordert Siliziumkarbid und andere Technologien sowie eine stärkere Automatisierung.“

LOTOS 3D-Messysteme helfen bei Umsetzung der Null-Fehler-Strategie hin zu Produktionsprozessen mit hoher Ausbeute ohne jeglichen Ausschuss. Bereits kurz nach der Kristallzucht können die Siliziumkarbid-Blöcke auf geometrische Größen geprüft werden, sodass in den nachfolgenden Produktionsprozessen kein Ausschuss mehr entstehen kann.

LOTOS kontrolliert alle gängigen Parameter wie Außendurchmesser und Durchmesser am Primär- und Sekundär-Flat, die Flat-Längen, die Notch-Kontur, sowie deren genaue Winkelpositionen.

Spannungsqualität

Die Europäische Norm EN 50160 beschreibt die Hauptmerkmale der Versorgungsspannung am Verknüpfungspunkt des Kunden in öffentlichen Stromversorgungsnetzen. Sie spezifiziert, welche Grenzen die verschiedenen Parameter der Netzspannung unter normalen Betriebsbedingungen einhalten müssen.
Im Wesentlichen müssen folgende Parameter permanent überwacht werden:

  1. Spannungsamplitude
  2. Frequenz
  3. Symmetrie
  4. Flicker
  5. Oberschwingungen

So erlaubt die EN50160 Beispielsweise für Spannungsabweichungen eine Toleranz von +-10% der Nennspannung, die von 99% aller Messwerte innerhalb eines Wochenintervalls eingehalten werden müssen. Für die verbleibenden 1% innerhalb einer Woche ist eine Abweichung von +10 und -15% erlaubt.
Für die Ermittlung der Spannungsabweichung werden 10-Minuten-Mittelwerte herangezogen. Die angegebenen Abweichungen gelten also für langsame Spannungsänderungen.
Für die anderen Parameter wie Frequenz, Gesamtoberschwingungsgehalt, individuelle Oberschwingungen, Rundsteuersignale, Flicker usw. wird ebenso verfahren. Allerdings mit unterschiedlichen Grenzwerten, Perzentilen, Mittelungs- und mitunter auch anderen Beobachtungsintervallen.

Netzstörungen
Infolge von Netzstörungen treten meist schnelle Spannungsänderungen auf, deren Messwerte zweimal je Netzperiode bestimmt werden (rms1/2). Fällt der Messwert in einen Bereich von 1% bis kleiner 90% der Nennspannung, spricht man von einem Spannungseinbruch. Fällt der Messwert aller Phasen unter die 1%-Schwelle, liegt eine Versorgungsunterbrechung vor. Bei Messwerten größer als 110% der Nennspannung spricht man von einer Überspannung.
Netzstörungen werden nach ihrer Dauer und der erreichten Amplitude klassifiziert.

Spannungsqualitätsbericht
Da diese Grenzwerte für Spannungsqualität nur für den ungestörten Betriebsfall gültig sind, müssen Messwerte, die während einer Netzstörung aufgelaufen sind, markiert und aus der statistischen Energiequalitätsbewertung herausgerechnet werden.
Diese Arbeit übernimmt die Expert-Bediensoftware für die EPPE- und SHERLOG-Geräte auf Wunsch automatisch. Sie erstellt vollständig automatisiert normgerechte Spannungsqualitätsberichte von allen Messstellen über definierbare Betrachtungszeiträume.
Der Inhalt der Berichte kann individuell angepasst werden und beinhaltet neben dem normgerechten Spannungsqualitätsnachweis auch Angaben zu der Häufigkeit und Dauer von Versorgungsunterbrechungen, Spannungseinbrüchen und -erhöhungen samt Klassifizierung nach UNIPEDE, CBEMA, ITIC und SEMI F47.
Auch enthalten sein können Signalverläufe und Statistiken zu Strom, Wirk-, Bild- und Scheinleistung sowie zum Leistungsfaktor in den Bericht aufgenommen werden.
Die fertigen Berichte können ebenfalls automatisiert als PDF- oder DOCX- Datei zur späteren Verwendung abgelegt, an Netzwerkdrucker und an E-Mail-Adressen versendet werden.

Von
Brian Burke, Applikationsingenieur, KoCoS America LLC
Guy Wasfy, Geschäftsführer, KoCoS America LLC
Jürgen Dreier, Produktmanager, KoCoS Messtechnik AG

Erdungs- und Potentialverbindung sind ein wesentlicher Bestandteil für das sichere Funktionieren energie- und nachrichtentechnischer Systeme und zur Sicherstellung der Personen- und Gerätesicherheit.
Spannungspotentialdifferenzen sind durch Erdungsverbindungen und Erdungsverfahren zu vermeiden. Diese Potentialdifferenzen können zwischen metallischen Bauteilen und der Erde auftreten, die die Sicherheit von Menschen und/oder technischen Einrichtungen gefährden können. Metallische Bauteile müssen daher mit dem Erdpotential verbunden sein, um gefährliche Spannungen zu vermeiden. Spannungsabfälle werden durch die Erdung aller nicht spannungsführenden Teile und durch einen umfangreichen Erdpotentialausgleich (Erdungssystem) reduziert. Es ist daher wichtig, dass Erdungsverbindungen einen niedrigen Widerstand aufweisen. Widerstandsmessungen müssen sowohl an den Potential- als auch an den Erdungsverbindungen vorgenommen werden, um sicherzustellen, dass eine ausreichend gute niederohmige Verbindung erreicht und aufrechterhalten wird.

Nachfolgend ist ein Anwendungsbeispiel aus der Energieverteilung aufgeführt, bei denen die Erdung und der Potentialausgleich und deren gute Verbindung wichtig sind. Es gibt jedoch noch viele andere Anwendungen (Schienenfahrzeuge, Luftfahrtindustrie und Flugzeugwartung, usw.), bei denen Erdung und Potentialausgleich berücksichtigt werden müssen. Typische Anwendungen für den Potentialausgleich und die Erdung finden sich in Energieverteilungsanlagen in Nieder- und Mittelspannungsnetzen und insbesondere in Hochspannungsanlagen. Die Erdung aller nicht spannungsführenden Teile und ein umfangreicher Erdpotentialausgleich reduzieren Spannungsabfälle, die in Energieverteilungsanlagen durch kapazitive oder auch induktive Spannungskopplung entstehen können.

Ein Beispiel für diese nicht spannungsführenden Teile sind mechanische Trennschalter, mit denen eine Schaltanlage außer Betrieb genommen wird. Da diese Schalter von Menschen gewartet werden müssen, ist es wichtig, dass ihre Erdungsverbindung nicht beeinträchtigt ist. Bei den Erdungsbändern handelt es sich um Metallgeflechte, die mit Schrauben am Schalter und am Erdungsanschlusspunkt befestigt sind. Diese Bänder können aufgrund von Korrosion oder äußere Schäden zu schlechten Leitern werden. Ein beschädigtes Band kann zu einer unsachgemäßen Erdung des Schalters führen, was ein gefährliches Berührungspotential bei der Benutzung des Schalters verursacht. Um sicherzustellen, dass die Bänder ordnungsgemäß ausgeführt sind, kann die Verbindung mit einer Mikroohmmessung geprüft werden. Ein defektes Erdungsband weist einen hohen Widerstand auf, während ein gut leitendes Band einen niedrigen Widerstand aufweist. Ein hoher Widerstand der Verbindung oder im schlimmsten Fall ein defektes Band kann es erforderlich machen, die Schraubverbindungen zu reinigen und neu zu verbinden oder das Band komplett zu ersetzen.

Neben verschraubten Erdungsbändern können die Erdungsverbindungen auch durch Verschweißungen verbunden werden. Diese Verschweißungen führen zu einer guten mechanischen und elektrischen Verbindung. Dies gilt insbesondere für die Verbindung verschiedener Metalle, wie z. B. die Verbindung eines Kupfererdungsstabs mit einer verzinkten Metallstruktur in einem Umspannwerk. Wenn diese Verschweißungen ordnungsgemäß ausgeführt werden, entsteht eine haltbare und zuverlässige Verbindung (Bild 2). Durch unsachgemäße Erwärmung oder Feuchtigkeit können die Schweißverbindungen Löcher oder Lücken aufweisen (Bild 3) und sowohl mechanisch als auch elektrisch als minderwertig angesehen werden. Die Durchführung einer Mikroohm-Widerstandsmessung an diesen Verbindungen kann Aufschluss über die Schweißqualität geben. Je fachgerechter die Schweißverbindung ausgeführt ist, desto niedriger ist der Widerstandswert. Eine minderwertige Verbindung kann zu einer unzuverlässigen Erdung führen.

Die Widerstandsmessgeräte der KoCoS Messtechnik AG sind ideal für die Messung von Potential- und Erdverbindungen. Das Präzisions-Widerstandsmessgerät PROMET SE dient zur Bestimmung von niederohmigen Widerständen im μΩ- und mΩ-Bereich. Mit einstellbaren Prüfströmen von bis zu 200 A in Verbindung mit einem Vierleitermessverfahren liefern die Systeme Messergebnisse für höchste Genauigkeitsanforderungen. Der Einsatz modernster Leistungselektronik und die robuste Bauweise garantieren höchste Zuverlässigkeit für den mobilen Einsatz.

Das PROMET SE ist ideal für die Vor-Ort-Prüfung, da es batteriebetrieben ist und keinen Netzanschluss benötigt. Viele der beschriebenen Verbindungen können sich an eher unzugänglichen Orten befinden, wie z.B. an Strommasten, sodass der Prüfer auf einer Leiter oder Ähnlichem steht. Ohne den Batteriebetrieb würde das Messgerät auch einen tragbaren Generator benötigen. Außerdem ist das PROMET SE sehr leicht und einfach zu transportieren. Das Messgerät wiegt weniger als 2 kg und kann bequem Vor-Ort eingesetzt werden.

Haben Sie Fragen oder Ergänzungen zur Widerstandsmessung oder zu unseren Messgeräten? Dann kontaktieren Sie uns über die Kommentarfunktion hier im Blog oder per Mail an info(at)kocos.com.

 

Die Sicherstellung höchster Produktqualität ist besonders bei der Herstellung von Lebensmitteln ein vorrangiges und unverzichtbares Ziel. Eine bedeutende Rolle spielt dabei die Dichtigkeit der Produktbehälter.

Durch Leckagen kann deren Inhalt nach außen dringen. Viel wesentlicher ist aber, dass Keime in den Behälter eindringen und dadurch die Produkte verderben.

Die Vakuumprüfsysteme INDEC überwachen die Dichtigkeit von Behältern vollautomatisch direkt im Produktionsprozess. Verschiedenste Behältnisse wie Flaschen, Gläser und Dosen werden berührungslos auf ihre Dichtheit geprüft und schadhafte Gebinde werden aus dem Produktstrom entfernt.

Mitunter sind jedoch die finanziellen Mittel bei kleinen Lebensmittelherstellern begrenzt, um in ein neues Komplettsystem zur Verschlußkontrolle zu investieren. Aus diesem Grund haben wir jetzt das preissensitive Basissystem INDEC VD 80 entwickelt und in den Markt eingeführt. Das INDEC VD 80 beinhaltet lediglich die drei Kernkomponenten Anzeigeeinheit, Anschlußeinheit sowie den Sensorkopf. Die erforderlichen Gestellbauteile zur Aufnahme und Ausrichtung des Sensorkopfes sowie zur Halterung der Anzeigeeinheit und des Anschlußkasten existieren vielfach aus bisher verwendeten Altsensoren, welche nach über 15 Jahren Nutzungszeit nicht mehr wirtschaftlich  reparabel sind. Mit einem geringen Aufwand können diese modifiziert werden, um die neuen Kernkomponenten aufzunehmen.  Hinsichtlich des Funktionsumfanges und der Zuverlässigkeit unterscheidet sich das INDEC VD 80 in keiner Weise vom INDEC VD 100.

INDEC VD 80 bestehend aus Anzeigeeinheit, Anschlußeinheit und Sensorkopf
Selbstverständlich können bei Bedarf gemäß der folgenden Tabelle diese zusätzlichen Komponenten zu einem späteren Zeitpunkt jederzeit nachgerüstet werden.

Aufgrund des hervorragenden, halbautomatischen Selbstlernverfahrens zur Ermittlung der Sensorparameter (Rezepte) ist analog zum INDEC VD 100 auch beim INDEC VD 80 eine Inbetriebnahme des Systems in Eigenregie durch den Kunden möglich. Der Einsatz eines KoCoS Techniker oder eines Technikers von unserem lokalen Vertreter vor Ort ist nicht zwingend erforderlich.

 

Beim Zuschalten von Transformatoren können Einschaltströme auftreten, die ein Vielfaches des Transformator-Nennstroms überschreiten. Da die Einschaltströme nach wenigen Millisekunden wieder abklingen, müssen Schutzeinrichtungen diese von Fehlerströmen unterscheiden und eine Auslösung entsprechend blockieren, um den korrekten Betrieb zu gewährleisten.

Untersucht man den Einschaltstrom mit einem geeigneten Messmittel wie dem SHERLOG-Störschreiber, kann man einen erhöhten Anteil der 2. Harmonischen erkennen. Diesen erhöhten Anteil nutzen auch die Schutzeinrichtungen zur Realisierung einer Einschaltstabilisierung. Überschreitet der Anteil der 2. Harmonischen einen festgelegten Prozentsatz, so wird die Auslösung von der Schutzeinrichtung blockiert.

Da es sich hierbei um eine Blockade von Schutzfunktionen handelt, muss die Prüfung der Einschaltstabilisierung Teil der Schutzprüfung sein. Hierzu müssen Prüfgrößen, die im Auslösebereich der Schutzeinrichtung liegen, mit entsprechenden Anteilen an Harmonischen überlagert und die Reaktion des Relais bewertet werden. Mit dem VD-Monitor der Prüfsoftware ARTES 5 können solche Prüfabläufe auf einfache Art und Weise erstellt werden. Dabei kann das Verhältnis zwischen Grundsignal und Überlagerung konstant gehalten oder stufenförmig mittels Rampendefinition geändert werden. Die Aneinanderreihung mehrerer Prüfsequenzen mit den unterschiedlichsten Einstellungen ermöglicht so die phasenselektive Prüfung der Einschaltstabilisierung in einem einzigen Prüfablauf.

 

 

Noch Fragen oder Ergänzungen zum Thema? Dann gerne über die Kommentarfunktion hier im Blog oder per Mail an bfleuth(at)kocos.com.

 


Top